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1. Introduction

Over the last decade financial markets have un-
dergone significant changes. Firstly, many illi-
quid banking and financing instruments have been
replaced by securities that are traded in national
or international markets providing them with high
liquidity. Secondly, the pressure for performance
(i.e. the gains of individual positions or portfolios
vis a vis some benchmark) has increased, thereby
forcing traders and investors to take on more risk.
While the risk and return trade-off is well under-
stood in modern finance theory, too little atten-
tion has been put on risk measures and risk ana-
lysis until recently. This is partly due to the fact
that the notion of risk is rather complex and

* Earlier versions of this paper have been presented at the
7th Workshop of the Austrian Working Group on Banking
and Finance held at the Technical University of Vienna,
October 20-21, 1995, the Workshop on Risk Management
and Value at Risk for Financial Institutions held at the
European Institute for Advanced Studies in Management,
January 26-26, 1996 and in seminar presentations at the
University of Bielefeld, the University of Magdeburg and
the University of Mannheim. The authors gratefully ac-
knowledge the useful comments of Walter Wasserfallen
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that a common framework to measure risk and
in particular to quantify market risk has been
lacking.

Judging from the recent literature on risk analysis
and management a consensus for a quantitative
market risk measure seems to emerge. According
to this consensus market risk is defined as the
maximum potential loss of a portfolio that occurs
under normal market conditions with a prespeci-
fied probability. This concept of market risk is
referred to as Value at Risk (VaR) and constitutes
a one-sided confidence interval on portfolio
losses.[1] Although this measure has been intro-
duced only recently it already gained enormous
popularity among academics and more impor-
tantly among risk managers from the banking in-
dustry.

Risk management and VaR analyses, however,
have not only received -attention from academics
and market participants but also from regulatory
agencies like the European Community and the
Basle Committee. In March 1993 the European
Union published a binding Capital Adequacy Di-
rective (CAD) in which banks and firms involved
in security trading are required to hold capital ac-
cording to their market risk exposure. While this
directive lays out the procedures how to calculate
the capital requirements when holding risky as-
sets it does ignore the possibility of market risk
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reduction due to diversification. Therefore many
EU-countries followed the suggestion of the
Basle Committee (proposed in the Model Ap-
proach Paper of 1995) when implementing the
directive as national law and introduced the
choice for banks and security firms to either ap-
ply the CAD or an internal VaR model when cal-
culating capital requirements. This has made VaR
the standard market risk model in the entire fi-
nancial industry.

VaR has gained so much popularity because it
allows to represent the risk exposure of a finan-
cial institution’s trading portfolio in a single
number. While it is very convenient to express
market risk by means of a simple statistic, there
is, however, no consensus about the best imple-
mentation of this concept. In particular there are
numerous approaches to calculate the VaR. They
include the covariance approach, historical and
Monte Carlo simulation. The reason why there is
no unique approach is rooted in the definition of
VaR. The analytical definition of the VaR of a
trading portfolio reveals that it depends on (i) the
specification of the distribution of the portfolio
returns, (ii) the valuation model that is used to
map nonlinear positions into their underlying se-
curities, and (iii) a volatility estimate for portfolio
returns. Since the theoretical and empirical fi-
nance literature offers a variety of alternative
models and concepts to specify these individual
parts of a VaR model, there is no unique VaR
method. While this might be attractive from an
academic point of view, it may cause uncertainty
(and even confusion) among practitioners who
generally like to apply a single method to as
many different portfolios as possible.

One possible way to get a better understanding of
the different methods is to empirically evaluate
their performance as risk measurement systems.
In fact, a lot of current research is devoted to this
task. Existing papers evaluate the performance of
historical and Monte Carlo simulation (see PRIT-
SKER (1996), BUTLER and SCHACHTER
(1996)), evaluate the distribution assumptions for
VaR calculations (see FALLON (1996)), and deal

with the verification of the accuracy of VaR
models (see KUPIEC (1996)).

In this paper we take up the issue of empirically
evaluating the performance of VaR models and
focus on two of the above mentioned components
of such a model. We evaluate the forecasting per-
formance of different volatility models that are
required for calculating confidence intervals and
we study the significance of the returns distribu-
tion assumption for the accuracy of VaR. We
analyze the forecasting performance of three
commonly used volatility models: (i) constant
volatility, (i1) exponentially weighted moving av-
erage (EWMA), and (iii) GARCH volatility. As
for the distribution assumptions we compare three
alternative scenarios. One in which the VaR is
calculated on the basis of a normal distribution
for the portfolio returns, one in which we make
use of Student’s t distribution and finally a
GARCH model where the conditional returns are
assumed to follow Student’s t.

Our main results are that while the choice of a
specific volatility model has on average no sig-
nificant influence on the VaR estimate (the fore-
casting performance of the three models are quite
similar), the choice of the returns distribution
does have a significant consequence for the VaR
estimate. The latter result is not surprising, since
different distributions have different kurtosis and
hence predict the tail events (which are of interest
in risk management) differently.

The paper is organized as follows. In the next
section we briefly discuss the concept of VaR and
the different methods of implementing it. In Sec-
tion 3 we discuss alternative volatility models for
quantifying market risk. In Section 4 we describe
our data set and evaluate the forecasting perform-
ance of the alternative volatility models. Section
5 analyses the impact of the distribution assump-
tion on the VaR estimate and evaluates different
specifications empirically and finally Section 6
concludes the paper.
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2. Value at Risk

According to the standard definition Value at
Risk is the maximum amount one can expect to
lose on a given position during a given period
(the potential close-out period) with a predefined
probability (cf. JORION (1997) and RISK-
METRICS™ (1994)). This definition is based on
a statistical approach to quantify market risk and
identifies the VaR of a given portfolio with a one
sided confidence interval on its potential losses.
Let S, be a random state variable that measures a
stock price in period t for example. AS = S; — Si_ac
is the change of the state variable over the period
At. Let V(S,,t) be the value of a portfolio at time t.
If this portfolio includes derivative securities with
an underlying asset S its value V does depend on
the current price of the underlying. Over a period
of length At the value of the portfolio changes by
AV(AS, At), where AS is the change in the price
in the underlying asset and At is the holding pe-
riod or forecast horizon. Based on the change AV
we can define the value at risk of the portfolio. It
is given by (cf. FALLON (1996)):

Prob[AV(AS, At) > -VaR]=1-« (1)

where o is the confidence level.

From this definition it is clear that the calculation
of the VaR of a portfolio depends on the follow-
ing elements: (i) the distribution of the returns
(changes) of the portfolio V, (ii) the pricing
model that associates a value for the nonlinear
position in the portfolio with the underlying in-
struments. Finally, (iii) the VaR does also depend
on the volatility of the asset S. In order to see
these dependencies let us first consider the case
of a linear portfolio, i.e. a portfolio that consists
of a position in the asset S only where AS is nor-
mally distributed with zero mean and constant
variance 62, AS ~ N(0, 62). Then we get

AV =3 AS )

and the value at risk for a confidence level of o is
given by

Prob[AV(AS, At) > —VaR]
= Prob[0AS > —VaR]
= Prob[AS/6 > -VaR/06] =1 -« 3)

Since AS is normally distributed the change in the
portfolio value is also normally distributed and
the 100(o)th percentile, Z(a), of the standard
normal distribution is equal to

Z(o) = —VaR/do. 4
This results in a VaR given by
VaR=-Z(a) d o (5)

From equation (5) it becomes obvious that in or-
der to forecast the value at risk for the next day or
the holding period At, a volatility estimate for the
asset S is required. This also holds true in the case
of nonlinear positions like derivative securities.
Nonlinear positions require a pricing model to
relate the price of the underlying to the price of
the derivative security. Using the same notation
as above, V(Sy) is the value of a stock option, for
example, with the current stock price given by S,.
Making use of linear approximations the change

_in the value of the option AV can be related to the

change in the stock price identically as in equa-
tion (2) where 0 is the option delta. Hence it be-
comes obvious that the same approach as in the
case with a stock portfolio can be applied under
the restriction, however, that the nonlinearity of
the option position is linearized with the corre-
sponding approximation error. But again it be-
comes obvious that the forecast of the stock vola-
tility is necessary together with an assumption on
the return distribution and a valuation model
(with the corresponding &) to calculate the
VaR.

Although market risk can elegantly be expressed
in a single statistic as in equation (5), there exist
numerous ways to forecast volatility or to specify
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the returns distribution. Only empirical analysis
can shed light on the problem of finding the most
appropriate model. In this paper we concentrate
on the issues of volatility forecasts (¢) and distri-
bution estimation (Z(c)). In particular we want to
empirically evaluate the influence of the volatility
forecast and the distribution specification on the
VaR. For that matter we briefly introduce differ-
ent volatility concepts in the next section.

3. Choosing A Model for Volatility

The literature on the econometric modeling of fi-
nancial time series does not contain a standard
and well accepted definition of volatility. For re-
cent surveys illustrating the variety of models
available see PALM (1996) or DIEBOLD and
LOPEZ (1995). In this paper we do not want to
give a literature survey on volatility models. We
rather concentrate on those specifications that are
employed in this study. Hence our selection of
volatility specifications is driven by their fore-
casting abilities.[2]

a) Naive model: The benchmark for measuring
the forecasting performance of any volatility
model is the updated sample variance, defined
below. Under the assumption of normality the
distributions of stock returns can fully be de-
scribed by the mean and the variance. While
this is appealing, the naive model neglects the
above mentioned stylized facts like volatility
clustering, and fat tails. In algebraic form the
naive model can be written as

SRR A
O k-1

i=1

(6)

where r; is the compounded rate of return
rr=InX;-InX,; ), w is the mean return
and k is the sample length. For high fre-
quency time series (i.e. daily stock returns) the
mean is usually close to zero hence can be ne-
glected.

b) Exponentially Weighted Moving Average: The
main disadvantage of the naive model is that it
gives equal weight to all observations in the
sample, thus neglecting the stronger impact of
recent innovations. This is the reason why the
naive model is not capable of mimicking vola-
tility clustering present in stock returns. This
has led to the introduction of alternative mov-
ing average models for computing stock return
volatilities (see for example TAYLOR (1986)).
Comparing several specifications, Taylor
found that the Exponentially Weighted Mov-
ing Average (EWMA) did best with respect to
empirical performance. The idea behind the
EWMA is the following. The volatility of the
current period t is calculated as an MA(e0)
process of weighted squared deviations from
the mean where the weights decay exponen-
tially, i.e.,

o2 =(1-W) 3N (s 1)
i=0
=hol, + (1A, —n)

(M

where A is the weight or decay factor.

The definition of the EWMA model makes
apparent that it is a generalization of the stan-
dard variance estimator with decaying weights.
While the definition of the EWMA is rather
straightforward its use depends on the estima-
tion of the weight A. It can be chosen by
minimizing an appropriate €rror measure.
What is also seen from specification (7) is that
an initial value for the series is needed in em-
pirical estimation. Usually the sample variance
is chosen. The volatility estimates of RISK-
METRICS™ are based on an EWMA-model.
But in the empirical specification the decay
parameter A is not estimated using some ob-
jective function but it is arbitrarily set equal to
.94. All the volatility forecasts are based on
this specification. When we evaluate the fore-
casting abilities of the different specifications
we will also use this value.
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¢) GARCH models: The most successful model

for describing nonlinear dynamics and non-
normality of stock returns is the Generalized
Autoregressive Conditional Heteroscedasticity
(GARCH) model, introduced by ENGLE
(1982). It 1s a model that particularly builds on
time-varying second order moments. Applica-
tions of GARCH in finance are surveyed in
BOLLERSLEYV et al. (1992). While the class
of GARCH models is rather flexible and ad-
mits a large variety of different specifications
we concentrate on GARCH(1,1) that is defined
as follows

I =p+u, 8)

with u, =8t\/E ©)
with & ~ N(0,1) and
h,=a,+auf, +ah (10)

This specification implies that the conditional
variance follows an ARMA-type process
where stationarity is satisfied when the sum of
a; and a, is less than 1. If this condition is
violated there is a unit root in the variance
process and the corresponding model is re-
ferred to as an integrated GARCH (IGARCH)
model. The introduction of conditional time-
dependent second moments is capable of gen-
erating all stylized facts of stock returns men-
tioned in section 1. In particular we obtain
volatility clustering as well as leptokurtotic
unconditional returns. This holds true even
when a Gaussian distribution is specified for
the standardized residuals €.

Comparing the GARCH model for quantifying
market volatilities with the EWMA specifica-

tion introduced above we observe that the two
are closely related. The major differences stem
from the way the model parameters are esti-
mated and from the their stationarity assump-
tions. As for the parameter estimation GARCH
models do make use of statistical techniques
like maximum likelihood estimation whereas
the EWMA as used in RiskMetrics™ arbitrar-
ily sets the weight equal to .94. Moreover the
GARCH model includes a constant term in its
variance specification and does not assume
nonstationarity from the outset. But apart from
these differences the two models are quite
similar and hence we can expect them to de-
liver similar volatility forecasts. Since EWMA
assumes a nonstationary variance process we
can expect that this model does well when ac-
tual data are close to being nonstationary.
Nevertheless we argue that the GARCH frame-
work is the more flexible model since it offers
many alternative specifications and its pa-
rameters are estimated based on observed data.
For a survey on different GARCH specifica-
tions see PALM (1996). The most popular ex-
tensions to the standard GARCH model as in-
troduced here is the exponential GARCH
(EGARCH), proposed by NELSON (1991)
and the GLOSTEN, JAGANNATHAN,
RUNKLE (1993) model. These modifications
do offer improved fits relative to the standard
model but they can only be applied to stock
returns. Since a methodology for estimating
market risk requires some flexibility as far as
the application to varies securities is con-
cerned we do not apply EGARCH models in
this paper.

d) Implied Volatility: The models outlined so far

all use time-series methods to forecast market
volatility. An alternative approach is to make
use of option prices and calculate what is re-
ferred to as implied volatility. The idea be-
hind this approach is the following. For many
securities traded in the market derivative
products like options do exist that are priced
on a daily basis. Since option prices are de-
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termined by the volatility of the underlying
asset these prices together with an option
price model can be used to calculate implied
volatilities which can serve as volatility esti-
mates. While this approach is appealing it
suffers from several major drawbacks.
Firstly, options do not exist for all the secu-
rities traded in a market and hence the con-
cept of implied volatility is not universally
applicable. Secondly, the implied volatilities
do depend on the option pricing model.
These two arguments lead us not to pursue
the concept of implied volatilities any fur-
ther. A full discussion of this issue is given in
LAMOUREUX and LASTRAPES (1993) or
BATES (1996).

4. Volatility Estimates and Forecasts
4.1 Statistical Properties of Sample Data

Our sample comprises 1500 daily compound re-
turns of three stock market indices and an interest
rate future: DAX, CAC, FTSE and the German
Government Bond Future, GeGB. We choose the
daily frequency as it is most useful for volatility
models. High frequency (= intraday) samples con-
tain too much noise and cause a heavy computa-
tional burden and monthly data result in too few
observations. Our sample was partioned into the
first 1,000 observations in-sample for modeling
and the remaining 500 observations were used for
out-of-sample forecasts. The sample period is
given by 89/1/6 to 95/7/17.

Figure 1: Normalized Estimated Unconditional Distribution of GEGB
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Table 1: Descriptive Statistics

DAX CAC FTISE GeGB
MEAN * 1000 0.2779 0.1083 0.3811 0.01099
VARIANCE * 1000 0.131 0.123 8.231 0.01284
SKEWNESS -1.1211%* -0.2331* 0.1714* —-0.0632 (0.28)
KURTOSIS 18.4161%* 3.6722% 2.3623* 3.9065*
Q(24) of 1, 20.09 (0.69) 22.00 (0.57) 35.02 (0.06) 48.96*
Q(24) of 2 63.88%* 176.68* 133.00* 722.78%*

This table presents the first four moments; Q(24) is the Ljung Box Q statistics for joint significance of the first 24 autocor-

relations, * indicates significance level of 99% and above.

Table 1 summarizes some descriptive statistics for
the four returns series. These statistics show familiar
behavior. There is significant nonnormality, in par-
ticular excess kurtosis. Heteroscedasticity in the
form of strong volatility clustering is responsible for
the fat tails. Moreover the Q-statistics indicate that
there is autocorrelation and nonlinearity in the data.
To get another perspective on the distribution of
the sample series, Figure 1 contains a nonpara-
metric estimate of the normalized unconditional
distribution of GEGB returns[3] (FHAT) and the
N(O,1) distribution for comparative purposes. The

nonparametric estimation is done with an Epa-
nechnikov kernel. Again nonnormality is evident.

4.2 In-Sample Estimation of Volatility Models

We start our econometric evaluation by estimat-
ing a GARCH (1,1) model for each of the four
time series with the sample from 89/1/6 to
95/7/17. The model is estimated by optimizing
the Maximum Likelihood Function with a BHHH
algorithm. Results are summarized in Table 2.

Table 2: GARCH(1.1) results 89/1/6 to 95/7/17

r,IT_, ~NQ@h,)

_ 2
h,=a,+au;, +a,h

Variable DAX CAC FTSE GeGB

1 * 1000 0.4821 (0.06) 0.1977 (0.44) 0.03951 (0.04) 0.01507 (0.82)
ap * 1000 0.01015% 0.0939% 0.003455* 0.000111 (0.25)
a 0.1378* 0.0928* 0.0692%* 0.0797*

a 0.7991%* 0.8319* 0.8809* 0.9145%

LRT IGARCH 24.96% 19.26% 11.61%* 1.10 (0.29)
Degrees of freedom @ 5.4159* 7.2974% 10.8975* 7.1731*

* significance level of coeffiecient is 99% and above.
) Likelihood Ratio Test for Integrated GARCH. i.e.: Hy is a; +a,=1

@ Degrees of freedom estimated for GARCH with conditional Student's t distribution instead of Normal
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They show significant GARCH effects. To in-
vestigate the evidence of a unit root in the second
moment, we computed the Likelihood Ratio Tests
(= LRT) for the restriction of an integrated
GARCH model (a; + a; = 1). All four returns’ se-
ries reject the IGARCH specification. As a sec-
ond volatility model we make use of the EWMA
as specified in RiskMetrics™. This implies that
we fix the decay factor A and set it equal to 0.94.
Because the coefficients for the EWMA model
are fixed a priori we can not directly compare
this model to a GARCH model by computing
specification tests. Still we can note that the es-
timated GARCH coefficients differ from, the
values 0.94 and 0.06, which are used in Risk-
Metrics™. Of particular importance is also that
the constants ag in the conditional variance
equation of the GARCH model are significant
(cf. Table 2). Assuming that the true volatility
model is of the GARCH-type, this difference
will cause biased forecasts for the EWMA
model.

4.3 Out of Sample Forecasting Performance

Since our objective is to evaluate the forecasting
performance of alternative volatility models and
their consequences for VaR estimates we make
use of the following methodology. We start with
a sample of 1000 observations for estimating the
sample variance and the coefficients for the
GARCH(1,1) specification for each of the four
return series. Based on these estimated structural
equations, forecasts are computed for the next
k = 10 periods by making use of the following
volatility equations:

GARCH(1,1)
(k=1: h., =a,+au; +ah, (11)
k>1: h, =a,+@ +a,h,,,
EWMA:

k=1 ﬁt+1 = 00611(2 +094ht (12)
k>1: ﬁt+k+1 Zﬁwk
Naive Model:
ook = 2o 3, )
he ek =—— r., —u
999 5 (13)

Forecasting is continued by discarding 10 obser-
vations at the beginning and adding 10 at the end.
Again GARCH and the sample variance are rees-
timated and new forecasts are computed. This
method of rolling forecasts leaves a constant
sample length of 1000 observations. An alterna-
tive to the rolling sample is the updated sample
method, which grows over time. We believe that
rolling forecasts are more useful as the influence
of innovations from the past is diminished. In
ENGLE et al. (1993) a GARCH model with 1000
observations gives the best performance when
comparing models in a simulated options market.
Overall we obtain 10 times 50 = 500 forecasts.
We compared the behavior of estimated
GARCH coefficients across the rolling subperi-
ods. Their values are quite close to those re-
ported in Table 2 with some differences after
large price changes.

To evaluate the forecasting performance of the
alternative volatility models we require a bench-
mark which in our case is assumed to be given by
the squared daily returns. Although this assump-
tion is critical, there is no alternative as the lit-
erature on forecasting volatility documents, e.g.
PAGAN and SCHWERT (1990), SCHMITT
(1994), WEST and CHO (1994), JORION (1995)
or FIGLEWSKI (1997).

The evaluation of the forecasting performance of
the three different models is based on two differ-
ent statistical tests: the Root Mean Squared Error
(RMSE) and a linear regression approach intro-
duced by PAGAN and SCHWERT (1990).
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Table 3a: Mean Errors of 10-day Volatility Forecasts"

DAX CAC FTSE GeGB
Const.Vola. 3.8135e-5 2.3137e-5 1.7056e-5 —4.9143e-6
EWMA -9.0271e-5 —3.7089e-6 —7.8438e-7 1.1214e-7
GARCH 2.8879¢-5 1.3804e-5 1.0522e-5 -2.4229e-6
IGARCH 6.8627e-5 5.6447e-5 2.0621e-5 1.9932¢e-6
Y1000 observations are used for model estimation. The mean error is defined as 1 % (e2 ~h )
500«
Const Vola. is the model with constant volatility, the other models are described in the text;
Table 3b: Root Mean Squared Errors of 10-day Volatility Forecasts"
DAX CAC FTSE GeGB
Const.Vola. 1.6243e—4 1.4760e—4 7.8807e-5 2.8610e-5
EWMA 1.5472¢4 1.4566e—4 7.4964e-5 2.6362e-5
GARCH 1.6145¢—4 1.4502¢4 7.5592e-5 2.6432e-5
IGARCH 1.7862¢e—4 1.5833e4 8.0381e-5 2.6878e-5

500

0.5
Y1000 observations are used for model estimation. The root mean squared error is liL z (ef —h, )2 :|

t=1

Const Vola. is the model with constant volatility, the other models are described in the text;

As the first statistical measure to evaluate the
forecasting performance of the volatility models
we use the RMSE. It is defined as:

1 50 035
RMSE:[;(EZ(ef —ht)z}

=1 (14)
where e refers to the realized volatility, i.e. the
benchmark, and h; to the forecast. The definition
of the RMSE implies that it measures the spread
of the estimates around the true value and that it
is the sum of the squared bias and the variance of
the estimator. On the contrary the Mean Error is a
measure of this bias only.

Table 3 reports the ME and RMSE for the differ-
ent volatility models with a rolling window of 10
days. It also includes the RMSE of the IGARCH
specification for all four time series. According to
the RMSE measure the EWMA model does best
in three of the four cases (DAX, FTSE and
GeGB) while the GARCH specification outper-
forms the other models for the CAC. It must be
noted, however, that the results are very close and
that there is no substantial difference between all
the three different models. In order to get additio-
nal insights into the forecasting performance of
the volatility models we have also calculated the
RMSE for the case with a rolling window of one
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trading day. The corresponding results are given
in Table 4.

They also show similar behavior but now the
EWMA ranks best for all four time series. Here
again the differences for the alternative models
are small.

We have pointed out that the RMSE is the sum of
the squared bias and the variance of the estimator.
It is, however, not possible to get information on
the source of the bias of the estimator. This
problem is discussed in FAIR and SHILLER
(1990) in the context of forecasting changes in
GDP. As an alternative method we apply the tests
proposed by PAGAN and SCHWERT (1990) for
volatility models. Instead of looking for the low-
est RMSE, they regress realized volatility on a
constant and the forecasted volatility by means of
a linear model

el =c,+ch, +¢, (15)

According to this test if E(e?) = h, (no bias), co

should equal 0, c; should equal 1, and the residu-
als should show no significant autocorrelation.
Based on this linear regression we can consider
the t-statistic of the coefficients as a measure for
the bias, and the R2’s as a measure of the variance
of a forecast. As already mentioned the bias and
the variance are also the components of the
RMSE but in that case they are given in aggregate
form whereas with the linear regression they can
be separated out. Equation (15) is estimated by
ordinary least squares, however we make an ad-
justment for the variance-covariance matrix to get
a consistent estimator for standard errors. Here
we choose the method proposed by WHITE
(1980): The standard errors are made robust

Table 4a: Mean Errors of 1-day Volatility Forecasts"

DAX CAC FTSE GeGB
Const.Vola. 3.8135e-5 2.3250e-5 1.7050-5 —4.9143e~6
EWMA 1.047¢-6 —4.6881e-6 -1.1260e~6 1.0817¢-7
GARCH 1.8479¢-5 9.2554e-6 7.4886e—6 -1.9549¢-6
" 1000 observations are used for model estimation. The mean error is defined as _! % (ez ~h )
500 &
Const Vola. is the model with constant volatility, the other models are described in the text;
Table 4b: Root Mean Squared Errors of 1-day Volatility Forecasts"
DAX CAC FTSE GeGB
Const.Vola. 1.6243e4 1.4765¢-4 7.8807¢-5 2.8610e-5
EWMA 1.5526e—4 1.4649¢-4 7.5294e-5 2.6335e-5
GARCH 1.5787e—4 1.4660e—4 7.5965¢e-5 2.6496¢e-5

1000 observations are used for model estimation.

t

500 0.5
The root mean squared error is defined as L 2 (e2 ~h, )2
500

t=l

Const Vola. is the model with constant volatility, the other models are described in the text;
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Table 5a: Linear Regressions for 1- day GARCH Forecasts

2 _
e, =c,+ch, +¢,

DAX CAC FISE GeGB
Constant*10* 0.6272 (1.69) 0.9403 (2.48) 0.0690 (0.47) 0.0138 (0.91)
Beta 0.2576 [0.31] 0.1249 [0.30] 0.7648 [0.21] 1.0416 [0.068]
R? 0.0026 0.0003 0.021 0.0975

* indicates a significance level of 99% and above; (t-statistic) [standard error]

Table Sb: Linear Regressions for 1- day EWMA Forecasts

e’ =c,+ch, +g,

DAX CAC FISE GeGB
Constant*10* 0.4475 (2.28) 0.8421 (3.74) 0.1821 (2.81) 0.0228 (2.22)
Beta 0.5019[0.18] 0.236 [0.20] 0.675[0.11] 0.8473 [0.04]
R? 0.0151 0.0018 0 .0358 0.1069

* indicates a significance level of 99% and above; (t-statistic) [standard error]

against heteroscedasticity and against autocorre-
lation up to lag 36. The advantage of this method
is that we can gain information on the trade-off
between the variance and the bias of a forecast
and the rankings according to the two methods
can be compared. The results based on the linear
regression test are given in Table 5. Since ac-
cording to the RMSE the best forecasting per-
formance was achieved either by the GARCH or
the EWMA we restrict the regression test only on
those models. First, let us look at the performance
ranking according to the R2.

Here we find that the EWMA is superior to
GARCH for all four returns series. Second, we
focus on the t-statistics. Here GARCH is superior
to EWMA in all cases.

Based on these results we can draw the following
conclusions. The forecasting performance of the
EWMA is superior to the GARCH specification

in all four cases but the GARCH(1,1) model has a
lower bias. Again we want to point out, however,
that the differences in the two models are quanti-
tatively very small. In order to analyze the impli-
cation of this result for the accuracy of a VaR es-
timate we proceed as follows. For each of the for
returns series we start out with a hypothetical
portfolio with the value of 1.000 on January 2,
1993 and forecast the VaR for this position on a
daily basis by making use of the different volatil-
ity forecasts together with the assumption of
normally distributed returns and a confidence level
of 95%. This results in VaR forecasts given by

VaR,; = 1.000 * 1.65 * o, (16)
where o, is the volatility forecast for the next day.

The plots of the VaR with GARCH and EWMA
are shown in Figure 2 and 3 for GeGB.[4] It
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Figure 4: VaR-t of GARCH & Change of Portfolio
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strongly supports our findings for the perform-
ance of the volatility estimates and lead us to one
of the main conclusions of the paper: The choice
of the volatility model does not have a strong im-
pact on the performance of a value at risk based
risk management system.

Moreover in Table 6 we present the number of
times the actual loss of the portfolio was larger
than the forecasted one. We find that when the
VaR is calculated on the basis of a normal dis-
tribution and EWMA volatility forecasts the risk
is systematically underestimated while in case
of GARCH volatilities the number of outliers
corresponds roughly with the significance level
of 95%. This findings support the fact that tak-
ing into account leptokurtic distrubutions is cru-
cial for the estimation of the VaR. While
GARCH models are capable of capturing some
leptokurtosis present in the data simple EWMA
models do not, which explains the difference in
the results.

5. Distribution Estimation and VaR

It is evident from the test statistics given above
that daily return series are NOT normally distrib-
uted. This is already the common finding since
the 1960°s, when Eugene Fama and Benoit Man-
delbrot started the literature on the empirical
characteristics of financial time series. More re-
cent examples are among many others HSIEH
(1988) for Pound Sterling, Canadian $, DM,
Swiss Franc and Japanese Yen against US §,

KIM AND KON (1994) for 30 US stocks and 3
stock indices and all these papers use samples at a
daily frequency. Since the Gaussian allocates too
little probability mass in the tails the chance of a
crash is underestimated. But when estimating
market risk, it is exactly the extreme values which
are of particular importance.

An answer to the question of finding the appro-
priate distribution for asset returns can be found
in PEIRO (1994). He compares several alterna-
tive specifications on daily returns from 6 stock
market indices: Using Pearson’s goodness-of-fit
statistic and Likelihood ratio tests for nested dis-
tributions he evaluates the Student’s t, Paretian,
mixture-of-normals, Logistic and Exponent
power with the Normal as a benchmark. His re-
sult is that the Student’s t offers the best fit. This
is intuitive, because by means of an estimate for
the degrees of freedom it can accomodate the ob-
served excess kurtosis. For degrees of freedom
which are higher than 10, the Student’s t is close
to the Normal. Table 7 gives the estimated de-
grees of freedom for the Student’s t distribution
for our sample series. We again reject the Gaus-
sian distribution, as all estimates are below 5. The
improvement of the Student’s t respective to the
Gaussian can be quantified using posterior prob-
ability criteria. We computed the Schwarz Infor-
mation Criterion for both specifications. They are
given in Table 8. All show that as a static or time-
invariant model for returns, the t distribution of-
fers a significant improvement over the Normal.
The same is true for GARCH as a time-dependent
model.

Table 6: Number of Outliers of VaR models

DAX CAC FTSE GeGB
EWMA 45 32 40 24
GARCH 36 24 15 11
EWMA-t 16 12 24 6
GARCH-t 13 9 12 7
52 Finanzmarkt und Portfolio Management — 13. Jahrgang 1999 — Nr.1
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Table 7: Student's t estimation results 89/1/6 to 95/717

DAX CAC FTSE GeGB
Mean*1000 0.3732 0.1872 0.3570 0.0486
Variance* 1000 0.1222 0.1228 0.06687 0.00133
Degrees of F. 3.9682 5.3512 8.3204 3.9979
* indicates significance level of 99% and above.
Table 8: Schwarz Information Criteria
SIC = L — 0.5*log(N)*k
DAX CAC FTSE GeGB
Normal 5186.1526 5234.2013 5747.2589 7162.6696
Student's t 5384.3615 5300.8409 5779.0098 7264.7793
GARCH 5283.3979 5292.8587 5780.6112 7359.0807

We can now go back to the definition of the mar-
ket or Value at Risk. Under Normal distribution
and a confidence level of 95 % this is[5]:
VaR, =MV 1.65 ¢, 17
Making use of the results from fitting the Stu-

dent’s to the series in our sample we get the fol-
lowing results:

VaRpax =MV 2.13 6pax (18)
VaRcac =MV 2.01 OcAC (19)
VaRprsg = MV 1.86 OFTSE (20)
VaRgege= MV 2.13 OGeGB (21)

The differences in the results are high, as the val-
ues from the Normal and the t distributions only
converge for very high degrees of freedom. The
advantage of this method is that it accounts for
the asset-specific leptokurtosis. This is a consid-
erable improvement on the rigid assumption of
Normality.

Based on the estimation of empirical distributions
we report in Table 6 the number of times the ac-
tual loss of the hypothetical portfolio is larger
than the estimated one. Here we find that risk is
either correctly quantified or even overestimated.

6. Conclusions

The econometric evaluation of several market
risk models proposed in this paper allows the
following conclusions. In the Technical Docu-
ment the EWMA is chosen to forecast standard
deviations and the Gaussian distribution is as-
sumed. Based on the above results we propose the
GARCH class of models and for the uncondi-
tional distribution we select the Student’s t.
GARCH nests the EWMA and is so the more
flexible approach. For stationary series GARCH
has a better performance. It is not convincing to
make the assumption of nonstationarity for all the
assets in a portfolio. This can only be handled in a
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GARCH framework. It has to be pointed out
however that for nonstationary series EWMA
gives a good performance. The added advantage
of the EWMA is that it is easy to apply. Thus for
volatility forecasting the RiskMetrics™ approach
is on the whole a satisfying method. One caveat
in this conclusion is the choice of selection crite-
ria. During the estimation we have found a strong
dependence of the results on the criteria used. In
particular the assumption that realized volatility is
given by the squared series is not supported by
economic theory, which makes it questionable.
As we have already pointed out the results for
RMSE are sometimes very close and there is
clear solution.

However we have to criticize the assumption of a
normal distribution. The t distribution gives a
better fit to the return series and it allows for an
asset-specific measure for fat tails. This charac-
teristic is especially important in the context of
the discussion about the panic factor. The pro-
posal of the European Union for the Capital Ade-
quacy Directive was to allow banks to use their
individual models. However the results should be
scaled by a factor of three to make them more ro-
bust: This was dubbed the "panic factor". With
the t-distribution there is no need for this restric-
tive measure. Here the degrees of freedom meas-
ure the probability mass in the tails of the density
of a series. As we have seen above the resulting
VaR estimates differ strongly.

Footnotes

[1] For a detailed definition of the VaR measure see JO-
RION (1997) or the Technical Document of RiskMe-
trics™.

[2] See also BRAILSFORD and FAFF (1996) or FIG-
LEWSKI (1997).

[3] Results for other series are similar.

[4] Results for other series are similar.

[5] RiskMetrics™ also assumes that the cutoff point is set
for the 5 % tail area. In their comments on RiskMet-
rics™ LAWRENCE and ROBINSON (1995) discuss
the choice of the cutoff point. They are in favor of a
tighter value, namely 1%. However as the choice of 5%
is common in statistical inference, we have decided to
keep that value.
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