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ABSTRACT

In _nancial econometrics the modelling of asset return series is closely related
to the estimation of the corresponding conditional densities[ One reason
why one is interested in the whole conditional density and not only in the
conditional mean is that the conditional variance can be interpreted as a
measure of time!dependent volatility of the return series[ In fact\ the mod!
elling and the prediction of volatility is one of the central topics in asset
pricing[ In this paper we propose to estimate conditional densities semi!
non!parametrically in a neural network framework[ Our recurrent mixture
density networks realize the basic ideas of prominent GARCH approaches
but they are capable of modelling any continuous conditional density also
allowing for time!dependent higher!order moments[ Our empirical analysis
of daily FTSE 099 data demonstrates the importance of distributional
assumptions in volatility prediction and shows that the out!of!sample fore!
casting performance of neural networks slightly dominates those of GARCH
models[ Copyright Þ 1999 John Wiley + Sons\ Ltd[

KEY WORDS conditional densities^ forecasting^ GARCH^ neural networks^
volatility

The concepts of risk and volatility are central to the modern theory of _nance in general and to
asset pricing in particular[ For instance\ the price of an option depends on the volatility of the
underlying asset[ An accurate prediction of future volatility is thus crucial to obtain reasonable
option price forecasts[ However\ there is no generally accepted de_nition of volatility[ While
implied volatility is determined directly from market!based option prices together with an option
price model\ any historical measure relies on a time series model of asset returns[ The time series
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model is in fact a model of the conditional "probability# density "function# where the time!
dependent conditional variance is interpreted as the volatility of the underlying asset[

The _rst models in this direction were the ARCH "Engle\ 0871# and the generalized ARCH
"GARCH# models "Bollerslev\ 0875# which assume a conditional normal distribution[ Despite
their simplicity\ GARCH models are able to capture several stylized facts of asset return series\
namely heteroscedasticity\ volatility clustering\ and excess kurtosis[ Meanwhile there exists a
large body of literature dealing with extensions of the GARCH approach[ One common idea is
to include leverage e}ects into the model\ i[e[ negative returns are supposed to in~uence future
volatility more strongly than positive returns "Nelson\ 0889^ Engle and Ng\ 0882^ Glosten et al[\
0882#[ Recently\ neural networks have been proposed to model leverage e}ects in a non!linear
and semi!non!parametric way "Donaldson and Kamstra\ 0886#[ The second direction in which
GARCH models have been generalized is the speci_cation of the conditional density[

In Bollerslev "0876# it is suggested to use the standardized Student|s!t distribution instead of
the normal distribution in order to allow for fat tails in the conditional distribution "besides
heteroscedasticity#[ The kurtosis of the conditional distribution\ however\ is _xed "not time!
dependent#[ A survey of other conditional distributions which have been proposed in the litera!
ture\ can be found in Bollerslev\ Chou\ and Kroner "0881#[ Besides these parametric density
models\ semi!parametric models "Engle and Gonza�lez!Rivera\ 0880# and non!parametric models
"Pagan and Schwert\ 0889^ Boudoukh\ Richardson\ and Whitelaw\ 0886# have been speci_ed to
model return series[ A semi!non!parametric framework has been applied in a similar context in
Gallant and Tauchen "0878#[ Despite the large number of extensions proposed in recent years\
GARCH models are probably still the most widely used approach to estimate volatility[

In this paper the issue of conditional density modelling and forecasting is addressed from a
semi!non!parametric point of view[ We present a neural network!based model\ a so!called
recurrent mixture density network\ which approximates the conditional distribution by a mixture
of Gaussians[ The parameters of the mixture\ which determine the shape of the conditional
distribution\ are estimated from the elements of the time!dependent information set[ Therefore
the conditional density is itself time!dependent including higher!order moments such as conditional
skewness and conditional kurtosis[ This extension of the concept of heteroscedasticity to higher!
order moments is an attractive feature of our model[ Indeed\ it is rather unrealistic to expect that
a single parametric speci_cation of the conditional density is suitable for all kinds of return series
data "Bera and Higgins\ 0882#[ A natural solution is thus to modify the shape of the conditional
density in dependence of the data as in our model[ In addition\ the neural network!based model
allows for non!linear dependencies in the conditional mean and in the conditional variance[ In
the following sections we will concentrate\ however\ on the distributional aspects of density
modelling[

We compare three di}erent density speci_cations] a standard GARCH model with a normal
distribution "heteroscedastic but neither skewed nor leptokurtic#\ a GARCH model with a
Student|s!t distribution "heteroscedastic\ not skewed but leptokurtic#\ and a recurrent mixture
density network "heteroscedastic\ skewed and leptokurtic in a time!dependent manner#[ The
models are evaluated not only with respect to likelihood but also with respect to their volatility
forecasting performance[ Strictly speaking\ the predicted volatility\ i[e[ the variance of the con!
ditional density predicted by the models is compared to two historical volatility measures and
one measure of implied volatility[ Generally we _nd that a proper speci_cation of the conditional
density is crucial for the out!of!sample performance of volatility prediction[ In that respect the
classical GARCH model is dominated by the GARCH!t model and the recurrent mixture density
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network[ While both the GARCH!t model and the recurrent mixture density network are capable
of capturing fat tail elements in the conditional distribution only the recurrent mixture density
network allows for time!varying skewness and kurtosis which are common in _nancial markets[

The paper is organized as follows[ The next section recalls traditional GARCH models as well
as neural network!based models for conditional density estimation[ In the third section the
concept of mixture density networks is extended in a recurrent way to allow for GARCH
e}ects[ The empirical analysis of the volatility models with special emphasis on the prediction
performance is described in detail in the fourth section[ The _nal section presents conclusions[

CONDITIONAL DENSITY MODELLING IN FINANCE

Today it is widely accepted that return series of frequently traded assets such as stocks and stock
indices are characterized by several stylized facts such as fat tails in the unconditional distribution
of returns "see\ for example\ Mandelbrot\ 0852^ Fama\ 0854# and the observation that returns
are usually uncorrelated[ However\ large returns are commonly clustered which means that there
is a tendency that large price changes are followed by other large price changes[ This phenomenon
of volatility clustering has been _rst modelled by Engle "0871# and Bollerslev "0875# introducing
ARCH and GARCH models[

A simple return series model capturing the stylized facts to some extent is given by an
autoregressive model of _rst order "AR"0## for the conditional mean and a GARCH speci_cation
for the conditional variance[ More precisely\ the conditional density of the next return rt ¦ 0 is
given by

r"rt ¦ 0 =It# �k"mt ¦ 0\s
1
t ¦ 0# "0#

mt ¦ 0 �a9 ¦a0rt "1#

s1
t ¦ 0 � a9 ¦ a0e

1
t ¦b0s

1
t "2#

et � rt−mt "3#

where It denotes the information available at time t\ and k"mt ¦ 0\ s1
t ¦ 0# is the density of a normal

distribution of mean mt ¦ 0 and variance s1
t ¦ 0[ et is the prediction error at time t[ Stationarity of

this model is guaranteed if a9 × 9\ a0 − 9\ b0 − 9\ and a0 ¦b0 ³ 0 hold "besides =a0= ³ 0#[ In
contrast to the time!dependence of the variance\ the skewness and the kurtosis of the conditional
distribution are constant[0

Bollerslev later proposed to substitute the normal conditional distribution by a Student|s!t
distribution with n degrees of freedom in order to allow for kurtosis in the conditional distribution
that goes beyond that driven by heteroscedasticity "Bollerslev\ 0876#[ The conditional density
r"rt ¦ 0=It# of a GARCH!t model is given by

0 Since the conditional distribution is normal\ they are 9 and 2\ respectively[
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tn"mt ¦ 0\s
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0

1 00¦
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1

"n−1#s1
t ¦ 0 1

−
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with n×1#[ For n:�\ the density of equation "4# converges to the normal density k"mt¦0\ s1
t¦ 0#[

Therefore GARCH!t models are more general than GARCH models[ The degrees of freedom n

are an additional parameter which determines\ among other characteristics\ the kurtosis of the
conditional distribution[1 Since the conditional density in equation "4# is symmetric\ the con!
ditional skewness is 9[ In particular\ the skewness and the kurtosis of the conditional distribution
are again not time!dependent[

The number of publications dealing with extensions of the GARCH model is very large[ For
a comprehensive overview the reader is referred to Bollerslev et al[ "0881# and Bera and Higgins
"0882#[ Many extensions concentrate on the speci_cation of the conditional variance[ Our focus\
however\ is on the time!dependent shape of the conditional density[

The model which is introduced as a generalization of the GARCH models is a new neural
network!based model\2 or more precisely\ it is a recurrent extension of a so!called mixture density
network "MDN^ Bishop\ 0884^ Neuneier et al[\ 0883^ Ormoneit\ 0887#[ MDNs are able to
represent conditional densities of non!constant variance "thereby allowing for heteroscedastic
dependencies in the data# and they are able to approximate any continuous density "thereby
allowing for skewness and fat tails# to arbitrary accuracy "McLachlan and Basford\ 0877#[ This
concept has been applied to stock index data from the German "Ormoneit and Neuneier\ 08853#
and the Austrian market "Schittenkopf\ Dor}ner\ and Dockner\ 0887#[ In the latter paper\ MDNs
are compared to traditional volatility models on the basis of daily returns[ While MDNs show a
better performance than ARCH models\ the results of the comparison of MDNs and GARCH
models suggest that the recursive speci_cation of the latter is essential in order to model long!
term dependencies in volatility[ This conjecture naturally leads to neural network models with
recurrent dynamics[

RECURRENT MIXTURE DENSITY NETWORKS

The main idea of the model is to predict the parameters of the conditional density in dependence
of the data[ These parameters are the priors\ the centres\ and the widths of a weighted sum of
normal densities "mixture of Gaussians#[ More precisely\ a recurrent mixture density network

with n normal densities "RMDN"n## approximates the conditional density by

r"rt ¦ 0 =It# � s
n

i�0

pi\t ¦ 0k"mi\ t ¦ 0\s
1
i\t ¦ 0# "5#

where the parameters pi\t ¦ 0\ mi\t ¦ 0\ and s1
i\t ¦ 0 of the n Gaussian components are estimated by

1 For n × 3\ the conditional kurtosis is given by 2"n−1#:"n−3#[
2 See Refenes "0884# and Adya and Collopy "0887# for neural network applications in economics and _nance[
3 There MDNs are used to predict intraday volatility[
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Figure 0[ A recurrent mixture density network with two Gaussian components

di}erent multi!layer perceptrons "MLPs4#[ For the priors\ the softmax function s"p½ i\t# is applied
to the MLP outputs to ensure that the priors pi\t are positive and that they sum up to 0 which
makes the right!hand side of equation "5# a density function]

pi\t ¦ 0 �s"p½ i\t ¦ 0# �
exp"p½ i\t ¦ 0#

s
n

j�0

exp"p½ j\t ¦ 0#

"6#

p½ i\t ¦ 0 �MLP0i"rt# "7#

The outputs of the second MLP are the centres of the Gaussian components which are not
restricted] mi\t ¦ 0 �MLP1i"rt#[ Finally\ as a generalization of the GARCH models\ the MLP
estimating the conditional variances is recurrent and it has n¦0 inputs[ One input is the squared
error e1

t of the previous time step and the other n inputs are the variances s1
k\t\ k�0\ [ [ [ \ n\ of

the Gaussian components of the previous time step[ The mapping of this MLP5 is given by

MLP2i"e
1
t \s

1
0\t\ [ [ [ \s

1
n\t#� s

H

j�0

vij tanh 0wj9e
1
t ¦ s

n

k�0

wjks
1
k\t ¦ cj1¦si9e

1
t ¦ s

n

k�0

siks
1
k\t ¦bi "8#

The variances s1
i\t ¦ 0 are obtained by taking absolute values of the MLP outputs which avoids

negative values[ An RMDN with two Gaussian components "n�1# and three hidden units "for
each MLP# is depicted in Figure 0[6

4 The basic MLP maps the one!dimensional input rt onto an n!dimensional output[ The ith component is given by
MLPi"rt# � SH

j�0 vij tanh"wjrt ¦ cj# ¦ sirt ¦ bi\ 0 ¾ i ¾ n\ where H denotes the number of hidden units\ wj and vij the
weights of the _rst and second layers\ cj and bi the biases of the _rst and second layer\ and si the shortcut connection
from the input to the ith output component[
5 Since there are several inputs\ the weight vector wj and the shortcut vector si are replaced by a weight matrix wjk and a
matrix of shortcuts sik[
6 Weights which are _xed are set to 0[ The calculation of the conditional mean mt ¦ 0\ which is fed back as mt in the next
time step\ and the calculation of e1

t is indicated by extra units[
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For the described model\ the conditional mean mt ¦ 0 and the conditional variance s1
t ¦ 0 are

given by

mt ¦ 0 � s
n

i�0

pi\t ¦ 0mi0t ¦ 0 "09#

s1
t ¦ 0 � s

n

i�0

pi\t ¦ 0"s
1
i\t ¦ 0 ¦ "mi\t ¦ 0−mt ¦ 0#

1# "00#

For a model with only one Gaussian component "n�0#\ these equations are reduced to trivial
identities because p0\t ¦ 0 �0[ In this case an RMDN is reduced to a non!linear GARCH model
where the autoregressive speci_cations for the conditional mean and the conditional variance of
a standard GARCH model are replaced by MLPs[ In general "n− 1#\ however\ the shape of the
conditional density depends on the particular mixture of Gaussians the parameters of which are
themselves functions of the elements of the current information set It[ In particular this means
that higher!order properties of the conditional distribution such as skewness and kurtosis are
also time!dependent[ The exact expressions for the conditional skewness st and the conditional
kurtosis kt are obtained as

st ¦ 0 �
0

s2
t ¦ 0

s
n

i�0

pi\t ¦ 0 "2s1
i\t ¦ 0"mi\t ¦ 0−mt ¦ 0# ¦ "mi\t ¦ 0−mt ¦ 0#

2# "01#

kt ¦ 0 �
0

s3
t ¦ 0

s
n

i�0

pi\t ¦ 0 "2s3
i\t ¦ 0 ¦ 5s1

i\t ¦ 0 "mi\t ¦ 0−mt ¦ 0#
1 ¦ "mi\t ¦ 0−mt ¦ 0#

3# "02#

This time!dependence of higher!order moments is an appealing feature of RMDNs\ and it is in
contrast to the properties of GARCH and GARCH!t models[ We recall that for the latter models\
although conditional leptokurtic\ kt ¦ 0 is constant[ As noted in Bera and Higgins "0882#\ no
single speci_cation of the conditional density appears to be suitable for all conditional het!
eroscedastic data[ In this sense\ semi!non!parametric RMDNs represent a promising candidate
for modelling di}erent types of time!dependent conditional distributions[7

EMPIRICAL ANALYSIS

In this section we _rst describe the data sets which are used to estimate three di}erent volatility
models\ namely the GARCH model\ the GARCH!t model and the RMDN"1# model as de_ned
above[ Then several error measures which quantify di}erent aspects of the performance of the
models\ are described[ Finally\ the out!of!sample modelling and prediction performance of the
volatility models are analysed[

7 Another interesting neural network!based approach has been presented in Ormoneit "0887#[ The main concept is similar
to the one formulated in Gallant and Tauchen "0878#\ namely to approximate the conditional density by a series of
Hermite polynomials "Gram!Charlier expansion#[ The parameters of this approximation are predicted by so!called
recurrent conditional density estimation networks[
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Figure 1[ The time series of daily returns of the FTSE 099 from 1 January 0880 to 07 December 0886

FTSE 099 data set

The data set used in the empirical analysis is a series of daily closing values of the FTSE 099 and
of daily closing prices of call and put options on this index with di}erent maturities and exercise
prices[ The series covers the 0651 trading days from 1 January 0880 to 07 December 0886[ Daily
closing values st of the FTSE 099 are transformed into continuously compounded returns rt by

rt � 099 log
st ¦ 0

st

"03#

The time series of daily returns is depicted in Figure 1[
In order to take care of stationarity issues and to put the empirical analysis on a broader basis\

the time series is divided into _ve overlapping segments of three years[ The _rst segment covers
the years 0880Ð0882\ the second the period 0881Ð0883 and so on[ The _rst two years of each
segment are used to estimate the parameters of the volatility models whereas the third years
obtained from the segments form independent test sets[ In particular\ the test sets are not
overlapping[ By this procedure\ which is similar to cross!validation\ the reliability of the results
is increased in comparison to experimental studies on a single data set[ Some basic statistics of
daily FTSE 099 returns are summarized for each year in Table I[ In particular\ the mean\ the
standard deviation\ the skewness\ and the kurtosis of the unconditional distribution of returns
are reported[

Error measures

The commonly used procedure for estimating parameters of heteroscedastic models is the
maximum likelihood approach[ In this paper the average negative loglikelihood of the sample
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Table I[ Basic statistics of daily FTSE 099 returns from 0880 to 0886

Year Mean "×09−2# Std[ "×09−2# Skewness Kurtosis

0880 9[510 7[294 9[051 2[694
0881 9[418 8[755 9[761 7[426
0882 9[694 5[294 9[129 2[721
0883 −9[304 7[388 −9[081 1[355
0884 9[639 5[106 −9[964 2[275
0885 9[323 4[751 −9[382 2[614
0886 9[871 8[833 −9[970 3[798

"apart from some initial condition# which is denoted L\ is minimized[ L will also be called the
loss function of a data set since L can be calculated for data sets which were not used to estimate
the model parameters\ as well[ In other words\ the loss function can also be evaluated out!of!
sample[

In addition to the loss function\ alternative error measures are applied to analyse the per!
formance of the models[ These measures require the de_nition of a {true| volatility of the
underlying return series which is problematic since volatility is not directly observable[ As a _rst
rough approximation\ the squared daily returns are taken as a measure of {true| volatility[ Due
to the shortcomings of this approach\8 we turn to the notion of realized volatility which has
recently been proposed in literature "Andersen et al[\ 0888#[ In this framework daily volatility is
approximated by summing high!frequency intraday squared returns which leads to an essentially
model!free estimate of {true| volatility[ The data set available for this study consists of intraday
quotes of bidÐask prices of options on the FTSE 099 which include the value of the FTSE 099
at that time[ From this high!frequency data set the value of the FTSE 099 is extracted every _ve
minutes between 7]29 am and 3]29 pm which gives a series s½9\ s½0\ [ [ [ \ s½85[ Following Andersen et

al[ "0888#\ the variance over the 4!minute intervals is approximated by calculating 4!minute
squared returns r½t � "log s½t:s½t−0#

1\ t�0\ [ [ [ \ 85[ Additionally\ the overnight change of the index
must be taken into account[ At this point the question arises how the squared overnight return
should be scaled or\ in other words\ whether time outside the trading hours is the same as time
during the trading hours[ This item will be discussed more thoroughly in a later section[ For the
moment\ the overnight period of 05 hours is taken as 081 independent 4!minute intervals\ and
the realized volatility of the FTSE 099 is estimated by weighting the squared overnight return
r½1
9 and the intraday 4!minute squared returns r½1

t such that an unbiased estimator of daily volatility
is obtained]

s1
t �

177

86 0
0

081
r½1
9 ¦ s

85

t�0

r½1
t1 "04#

Denoting the {true| volatility "of the next time step# s1
t ¦ 0 and the corresponding conditional

variance predicted by a model09 s¼ 1
t ¦ 0\ the following two error measures are calculated for both

measures of {true| volatility]

8 Squared returns are considered to be an unreliable measure since they are contaminated by substantial measurement
error "Andersen and Bollerslev\ 0887#[
09 For the RMDN"1# models\ the accumulated conditional variance de_ned in equation "00# is inserted[
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NMAE�

s
N

t�0

=s1
t ¦ 0−s¼ 1

t ¦ 0 =

s
N

t�0

=s1
t ¦ 0−s1

t =
"05#

HR�
0

N
s
N

t�0

ut "06#

ut � 6
0] "s¼ 1

t ¦ 0−s1
t #"s

1
t ¦ 0−s1

t # − 9

9] else
"07#

Where N denotes the sample size the normalized mean absolute error "NMAE# relates the mean
absolute error

MAE� 0:N s
N

t�0

=s1
t ¦ 0−s¼ 1

t ¦ 0 =

of a volatility model to the MAE of the naive model s¼ 1
t ¦ 0 �s1

t which takes the most recent
volatility as the prediction of the volatility of the next time step[ The naive model thus serves as
a benchmark model which\ of course\ should be beaten[ In this case the NMAE is smaller than
0[ The minimum value is 9[ The hit rate "HR# is the relative frequency of correctly predicted
increases and decreases of volatility\ i[e[ it measures how often the model gives the correct
direction of change of volatility[00 The HR lies between 9 and 0[ A value of 9[4 indicates that the
model is not better than a random predictor generating a random sequence of ups and downs
"provided that ups and downs are equally likely#[

If one de_nes a measure of {true| volatility\ it is natural to apply also standard time series
models to this de_ned volatility series and to calculate the performance measures NMAE and
HR[ In particular\ autoregressive "AR# models without and with moving average "MA# terms
are standard models which can be estimated from the {true| volatility series over the time periods
covered by the training sets and which can then be evaluated on the test sets[ Since the squared
returns are considered to be contaminated by measurement errors\ it is not expected to _nd
pronounced dependencies in these series[ For the realized volatilities\ however\ it is a priori not
clear how much structure the series contain[

An alternative notion of volatility is provided by the concept of implied volatility which
completely neglects time series properties of the asset returns[01 On the one hand\ the concept of
implied volatility is attractive since it is a measure of the volatility expected by the market^ on
the other\ it requires a realistic option pricing model[ It should be noted that controversial results
have been reported on the statistical dependencies between implied volatility and "future# {true|
volatility "see\ for example\ Latane� and Rendleman\ 0865^ Canina and Figlewski\ 0882^ Lam!
oureux and Lastrapes\ 0882#[

For the FTSE 099 data set\ the average implied volatility of near at!the!money call and put

00 This information is essential for volatility trading strategies as described\ for instance\ in Tompkins "0883#[
01 The implied volatility of an option is calculated on the basis of the current option price and the current price of the
underlying asset[ To be speci_c\ it is the volatility for which the theoretical option price "for a given option pricing model#
coincides with the current option price[
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options02 is calculated for each trading day as a measure of the volatility currently anticipated
by the market03[ One way to quantify the prediction performance of a volatility model is to
calculate some distance measure\ say the MAE\ between implied and predicted volatilities04[ The
drawback of this approach is the implicit assumption that the Black!Scholes model describes the
option pricing by the market adequately[ Indeed\ since the analyzed time series are hetero!
skedastic\ i[e[\ volatility is time!varying\ the application of the Black!Scholes model might be
problematic[ As an equivalent approach with the same problem\ though\ one can calculate option
prices from the predicted volatilities and compare them to real!world option prices\ for instance\
by implementing a trading strategy "Noh et al[\ 0883\ Schmitt and Kaehler\ 0885#[ In fact\ earlier
experiments with the trading strategy in "Noh et al[\ 0883# on a set of DAX options revealed that
options were systematically over! or underpriced by all volatility models over di}erent periods
of time "of up to several months#[ Over these periods\ however\ the shape of the predicted price
curve "the predicted volatility curve# was similar to the true price curve "the implied volatility
curve# for all models[ We thus think that it is a reasonable approach not to rely on the BlackÐ
Scholes model directly but to measure the correlation between predicted and implied volatilities[
In other words\ to the extent that the implied volatility increases "decreases#\ the model should
predict an increase "decrease# of volatility relative to the current value[

As two market!oriented performance measures\ the linear correlation coe.cient\ i[e[ Pearson|s
r\ and Spearman|s rank order correlation coe.cient rs of implied volatilities s1

IV\t ¦ 0 and predicted
volatilities s¼ 1

t ¦ 0 are calculated[ The rank order correlation coe.cient is de_ned as the linear
correlation coe.cient where the values are replaced by their ranks "Press et al[\ 0881#[ This non!
parametric correlation measure is considered more robust than linear correlation[ Even more
importantly\ rs remains unchanged if both time series are distorted by arbitrary\ increasing
functions\ which do not change the ranks of the series[ In other words\ if the {true| volatility is
not the implied volatility but a "non!#linear\ increasing function of the implied volatility "which
we do not have to know#\ the rank correlation rs measures the correlation between the predicted
volatility and the {true| volatility[

We now turn to the methods for making multi!step volatility predictions[ For the GARCH
model and the GARCH!t model\ analytical results can be derived since the speci_cation of the
conditional variance is linear[ For the non!linear RMDN"1# model\ a Monte Carlo simulation
technique is applied[ Starting with the GARCH models\ the _rst goal is to calculate the expected
value of the variance n time steps "days# ahead conditioned on the current information set It]
E"s1

t ¦ n =It#[ For n�0\ the expectation operator vanishes since the deterministic relationship in
equation "2# holds[ For larger values of n\ the expected value E"s1

t ¦ n =It# can be calculated by
induction as

E"s1
t ¦ n =It# �

a9

0−a0−b0

¦ 0s1
t ¦ 0−

a9

0−a0−b01 "a0 ¦b0#
n−0 "08#

For a stationary GARCH or GARCH!t model satisfying a0 ¦b0 ³ 0\ the expected value thus
converges for n:� to a9:"0−a0−b0# which is the unconditional variance of the model[ The next

02 For each trading day\ options maturing the next month are selected[ The resulting time to maturity ranges from nine
to 41 days[
03 A traditional Black!Scholes model is used as the option price model "Black and Scholes\ 0862#[
04 In this case the predicted volatility must be the volatility predicted for the remaining lifetime of the option "multi!step
prediction#[
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step is to calculate the volatility "conditional variance# per time step "per day# for the remaining
lifetime of the straddle[ The reason for this step is that the BlackÐScholes model\ which is used
to calculate the implied volatilities\ assumes a constant volatility over the remaining lifetime[ The
expected values of the conditional variances are not constant05 but they can be substituted by
their average value which does not change the total volatility from tomorrow until the day of
maturity[ Using equation "08#\ it is easy to derive a closed!form expression for this average
volatility per day which is denoted s¼ 1

t ¦ 0[
For the non!linear RMDN"1# models\ the conditional expected values E"s1

t ¦ n =It# cannot be
calculated analytically in general[ Only for n�0\ where the conditional density r"rt ¦ 0=It# is
known explicitly\06 the "accumulated# conditional variance can be determined analytically using
equation "00#[ For larger n\ E"s1

t ¦ 0 =It# can be estimated by Monte Carlo simulation[ The main
item is to estimate the conditional densities r"rt ¦ i=It#\ i�1\ [ [ [ \ n\ in a recursive fashion[ More
precisely\ the following procedure is applied[ Starting with i�0\ random numbers "the {returns|
rt ¦ 0# are drawn according to the conditional density r"rt ¦ i=It#\ and the corresponding {prediction
errors| et ¦ 0 � rt ¦ 0−mt ¦ 0 are calculated[07 Then the rt ¦ 0\ the e1

t ¦ 0\ and the actual conditional
variances are fed as inputs into the trained RMDN in order to obtain "empirical# distributions
of the parameters of r"rt ¦ i ¦ 0=It#[ Additionally\ by using equation "00#\ the distribution of
s1

t ¦ i ¦ 0 conditioned on It is obtained[ By taking expected values\ i[e[ by calculating the mean
values of the empirical distributions\ the parameters of the conditional density r"rt ¦ i ¦ 0=It# as
well as E"s1

t ¦ i ¦ 0 =It# can be estimated[ Now the next step of the recursive procedure is performed
using the new parameters and so on[ Finally\ as for the GARCH models\ the mean value of the
"accumulated# conditional variances is calculated[08

Estimation results

A GARCH model\ a GARCH!t model\ and an RMDN"1# model are _tted to each training set
separately by minimizing the loss function L[ The parameter values obtained for the GARCH
models and the GARCH!t models are such that the models are stationary with a mean persistence
of 9[896 and 9[895\ respectively[ The degrees of freedom parameter n of the GARCH!t models
indicates substantial fat tails in the conditional distribution of returns for the _rst and second
training set[ Leptokurtosis in the conditional distribution has also been reported in Bollerslev
"0876# for the S+P 499[ For the RMDN"1# models\ which are semi!non!parametric\ the weights
of the MLPs can be hardly interpreted[ The number of hidden units was chosen ad hoc as H�2[
We did not try to optimize the network performance with respect to the number of hidden units[

In Figure 2 the conditional densities r"rt ¦ 0=It# estimated by the three volatility models are
plotted for two speci_c days of the last test set[ The _rst day is 15 February 0886 during a rather
calm period with returns close to 9[ The second day is 20 October 0886 after several large
decreases of the FTSE 099[

Due to the large return preceding the second day\ the conditional variances\ i[e[ the estimated
volatilities\ are much larger for the densities depicted on the right!hand side than for those on

05 Except for the case that s1
t ¦ 0 equals the unconditional variance[

06 The actual parameters are deterministic functions of the previous return\ the previous squared prediction error\ and
the previous conditional variances[
07 mt ¦ 0 is de_ned in equation "09#[
08 In our setup where daily closing prices are used\ the average volatility per day is calculated for all models as the mean
value of the conditional variances from the day after tomorrow until the day of maturity\ and it is compared to the
implied volatility of tomorrow[
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Figure 2[ The conditional densities estimated by the models for 15 February 0886 and for 20 October 0886
are depicted on the left! and right!hand sides\ respectively "dotted line] GARCH model\ dashed line]
GARCH!t model\ solid line] RMDN"1# model#

the left!hand side[ For both days\ the two normal densities of the RMDN"1# model are weighted
and combined such that the resulting distribution is leptokurtic[ Furthermore\ the conditional
distribution of the RMDN"1# model is negatively skewed on the _rst day and positively skewed
on the second day in contrast to the other models\ which have symmetric conditional distributions[

For a better illustration of the di}erences between the models\ the last test set\ which covers
the year 0886\ is plotted together with the mean\ the variance\ the skewness\ and the kurtosis of
the conditional densities estimated by the models in Figure 3[ The _rst half of this period is rather
tranquil with absolute returns smaller than 1) whereas the second part exhibits larger movements
in the returns[ The means of the conditional densities are very similar for all models[ The
conditional variances\ however\ are only similar for the _rst 049 days[ For the more volatile
period towards the end of 0886\ the RMDN"1# model exhibits much larger conditional variances
than the GARCH and the GARCH!t model[ In contrast to the _rst two conditional moments\
the conditional skewness and the conditional kurtosis are time!dependent only for the RMDN"1#
model[ The corresponding values are 9 and 2 for the GARCH model and 9 and 2[278 for the
GARCH!t model[ For the RMDN"1# model\ the skewness and the kurtosis vary considerably
over the whole year with average values of −9[132 and 2[303\ respectively[

It has been emphasized in the literature that the real test of a volatility model is to predict
volatility out!of!sample\ i[e[ on a data set disjoint from the training data "e[g[ by Pagan and
Schwert\ 0889#[ The ability of a model to forecast volatility out!of!sample is particularly impor!
tant for models with a large number of parameters "compared to GARCH models# such as the
semi!non!parametric RMDN"1# model which can potentially over_t the training data[ In an out!
of!sample analysis the size of the volatility models can be neglected since the parameters of the
models are estimated on a separate set of training data[ In this section only out!of!sample results
are summarized[

In our analysis\ as mentioned above\ each training set consists of daily returns over a period
of two years[ The corresponding test set covers the returns "squared returns\ realized volatilities\
implied volatilities# of the year following the training period[ In particular\ the performance on
a future data set "relative to the training set# is analysed[ In order to prevent the RMDN"1#
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Figure 3[ The series of daily FTSE 099 returns during 0886 "the last test set# and the mean\ the variance\
the skewness\ and the kurtosis of the corresponding conditional densities estimated by the models "dotted
line] GARCH model\ dashed line^ GARCH!t model\ solid line] RMDN"1# model#
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Table II[ Out!of!sample statistics for the GARCH\ the GARCH!t and the RMDN"1# models on the _ve
test sets of FTSE 099 returns

Standardized residuals
Set Model Loss Mean Std[ Skew[ Kurt[

0 GARCH 9[888 9[937 9[701 9[039 2[867
GARCH!t 9[873 9[952 9[683 9[056 2[892
RMDN"1# 9[881 9[930 9[684 9[036 2[846

1 GARCH 0[164 −9[001 0[905 −9[136 1[695
GARCH!t 0[186 −9[092 0[925 −9[133 1[597
RMDN"1# 0[150 −9[961 9[875 −9[124 1[513

2 GARCH 9[842 9[950 9[829 −9[044 2[367
GARCH!t 9[849 9[947 9[825 −9[069 2[409
RMDN"1# 9[833 9[976 9[885 −9[982 2[704

3 GARCH 9[778 9[904 0[949 −9[498 2[723
GARCH!t 9[776 9[900 0[942 −9[400 2[723
RMDN"1# 9[787 9[928 0[990 −9[403 2[704

4 GARCH 0[412 9[944 0[328 −9[972 2[360
GARCH!t 0[374 9[936 0[333 −9[975 2[361
RMDN"1# 0[390 9[967 0[173 −9[957 2[023

0Ð4 GARCH 0[017 9[903 0[938 −9[060 2[383
9[127 9[954 9[101 9[101 9[330

0Ð4 GARCH!t 0[010 9[904 0[942 −9[058 2[355
9[120 9[951 9[105 9[119 9[351

0Ð4 RMDN"1# 0[988 9[924 0[901 −9[041 2[358
9[086 9[946 9[045 9[107 9[400

model from over_tting the training data\ the performance on a validation set is used as the
criterion for model selection[ More precisely\ the model parameters are optimized with respect
to the loss function on the training set and after each iteration the loss function on the validation
set is calculated[ Finally\ the RMDN"1# model with the best performance on the validation set
is selected[ The validation sets cover the daily returns of the year preceding the period of the
corresponding training set[19 In particular\ the GARCH\ the GARCH!t and the RMDN"1#
models are estimated from the same data sets[

Table II summarizes the performance of the models on each of the _ve test sets[ At the bottom
of the table the mean value and the standard deviation "below# of each performance measure are
given[ In addition to the loss function\ some statistics of the standardized residuals are also
reported[ The standardized residuals are de_ned as et:st where et denotes the prediction error
and st the predicted standard deviation at time t[ The RMDN"1# model achieves the lowest value
of the loss function on three test sets whereas the GARCH!t model performs best on two sets[
There is thus substantial evidence that models with fat tails in the conditional distribution provide
a better "out!of!sample# _t to daily return series than standard models with a conditional normal
distribution[ On average\ the RMDN"1# models show the best performance[ Although the
di}erences between the loss functions are statistically not signi_cant10 it seems to be favorable to

19 For instance\ the _rst validation set consists of the FTSE 099 returns of 0889 "not described in Table I#[
10 A paired t!test is applied with a signi_cance level of 4)[
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Table III[ Out!of!sample errors for the GARCH\ the GARCH!t\ and the RMDN"1# models for di}erent
volatility measures

Squared returns Realized volatility
Set Model NMAE HR NMAE HR

0 GARCH 9[827 9[539 1[086 9[427
GARCH!t 9[845 9[539 1[219 9[427
RMDN"1# 9[848 9[525 1[218 9[423
ARMA 0[005 9[598 9[898 9[521

1 GARCH 9[624 9[631 0[448 9[433
GARCH!t 9[605 9[649 0[301 9[452
RMDN"1# 9[626 9[631 0[514 9[437
ARMA 9[621 9[649 9[741 9[560

2 GARCH 9[679 9[603 0[532 9[456
GARCH!t 9[667 9[607 0[513 9[456
RMDN"1# 9[629 9[603 0[268 9[500
ARMA 9[758 9[580 9[831 9[552

3 GARCH 9[657 9[698 9[854 9[511
GARCH!t 9[656 9[698 9[848 9[511
RMDN"1# 9[689 9[698 0[960 9[476
ARMA 0[990 9[527 9[768 9[523

4 GARCH 9[629 9[639 9[735 9[580
GARCH!t 9[629 9[639 9[736 9[576
RMDN"1# 9[638 9[639 9[673 9[556
ARMA 9[631 9[613 9[723 9[515

0Ð4 GARCH 9[689 9[698 0[331 9[481
9[974 9[930 9[438 9[954

0Ð4 GARCH!t 9[678 9[600 0[322 9[485
9[986 9[932 9[489 9[959

0Ð4 RMDN"1# 9[682 9[697 0[327 9[478
9[985 9[932 9[489 9[942

0Ð4 ARMA 9[781 9[571 9[772 9[534
9[056 9[948 9[933 9[919

model the time dependence of higher!order moments\ e[g[ by the proposed RMDN"1# model[
The out!of!sample statistics of the standardized residuals are similar for all models[

The performance of the models with respect to the NMAE and the HR is reported in Table
III[ As expected\ only weak dependencies are detected in the squared returns series[ More
precisely\ the AR coe.cients of the _tted ARMA models are between 9[0 and 9[04\ if they are
signi_cant at all\ and the MA coe.cients are not signi_cant[ The obtained AR model is even
worse than the naive predictor on the _rst and last sets "the NMAE is larger than 0# which is
possible since the performance is evaluated out!of!sample[ The GARCH\ the GARCH!t and the
RMDN"1# model always achieve NMAEs smaller than 0[ On average\ the GARCH!t model
performs best[ For the hit rate HR\ the return series models also perform better than the AR
models\ and the GARCH!t model achieves the highest hit rate on average[

If we take the realized volatilities as a benchmark for evaluating the forecasting performance
of our di}erent models we observe an interesting phenomenon that will be the key for under!
standing the corresponding out!of!sample results[ Looking at the left!hand side of Figure 4 we
observe that over the entire period of the _rst test set the realized volatilities are systematically
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Figure 4[ The "annualized# realized volatility "solid line# and the "annualized# volatility predicted by the
GARCH model "dashed line# for the FTSE 099 in 0882 "on the left!hand side# and in 0886 "on the right!
hand side#

below GARCH volatilities[ In fact closer observation suggests that there is a parallel downward
shift between GARCH and realized volatilities[ Hence scaling up realized volatilities by a constant
factor could eliminate this di}erence[ Considering our way to construct realized volatilities this
could be achieved by putting a higher weight on "scaling up# the overnight volatility[ Changing
the weight on the overnight volatility does not seem to be justi_ed a priori[ However\ it might be
possible that time during the trading period elapses with a di}erent speed than during the
overnight period[ If that is the case this has to be re~ected in di}erent weights for intraday and
overnight volatilities[ In particular\ if time during the overnight period passes more quickly than
during the trading day we have to scale up the overnight volatility11[ One possible explanation
for this di}erent {speed of time| could be the level of "dis#integration of international capital
markets[ In fact one can argue that the more integrated _nancial markets become\ the more
similar time will elapse between trading and non!trading hours[ Looking at the right!hand side
of Figure 4 we observe that during the period of 0886 the di}erence between GARCH and
realized volatilities is non!existent[ Hence for that period it seems that the scaling of realized
volatilities is correct[ It is obvious that the level of integration of international _nancial markets
in 0886 is much higher than in 0882[

Looking now at the out!of!sample results with realized volatilities as the benchmark we observe
that over the years the NMAE of the return series models improves relative to the ARMA
models[12 In 0886 the results of the AR model are dominated by the RMDN"1# model with
respect to the NMAE[ In that year all return series models also achieve a higher hit rate than the
AR model[

An alternative notion of volatility\ which can be used to analyse the prediction performance
of the models\ is the concept of implied volatility[ As mentioned earlier\ the linear correlation r

and the rank correlation rs are two measures for comparing implied volatilities obtained from

11 This is achieved by a larger scaling factor of r½1
9 in Eq[ "04#[

12 The AR"0# coe.cient is signi_cantly positive for all sets[ For the third and fourth set the "signi_cant# MA"0# coe.cient
is also included[
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Figure 5[ Histograms of the parameters of the conditional density r"rt ¦ 1=It# obtained from 09\999 RMDN"1#
outputs[ The parameters are estimated as the corresponding mean values "see text for further explanation#

the market to volatilities predicted by a model[ The di}erence to the above error measures is not
only the inclusion of real!world option data but also the prediction horizon[ Now volatility is
predicted several steps into the future\ i[e[ for the remaining time to maturity of the particular
option[

In order to illustrate the Monte Carlo simulation technique for the RMDN"1# models\ we
look at the _rst prediction of the _rst test set[ The parameters of the conditional density r"rt ¦ 0=It#\
which is a weighted sum of two normal densities\ are determined as p0\t ¦ 0 �9[675\ p1\t ¦ 0 �9[103\
m0\t ¦ 0 �−9[913\ m1\t ¦ 0 �9[209\ s1

0\t ¦ 0 � 9[406\ and s1
1\t ¦ 0 � 0[266[ The accumulated con!

ditional variance is thus given by s1
t ¦ 0 � 9[619[ By drawing 09999 {returns| from this distribution\

calculating the corresponding {prediction errors| and feeding them together with s1
0\t ¦ 0 and

s1
1\t ¦ 0 into the RMDN\ the distributions of the parameters of the next conditional density

r"rt ¦ 1=It# can be approximated[ Histograms of these distributions are depicted in Figure 5[ For
s1

0\t ¦ 1 and s1
1\t ¦ 1\ the histograms re~ect the asymmetric distribution of e1

t ¦ 0[ The mean values of
the six parameters are p0\t ¦ 1 �9[686\ p1\t ¦ 1 �9[192\ m0\t ¦ 1 �9[996\ m1\t ¦ 1 �9[059\
s1

0\t ¦ 1 � 9[413\ and s1
1\t ¦ 1 � 0[394[ The new value of the accumulated variance\ in which we are

mainly interested\ is s1
t ¦ 1 � 9[617[ It should be noted that the accumulated variances are esti!

mated simultaneously from the outputs of the RMDN using equation "00# mean m "and not from
the values of the parameters#[

The linear correlation r and the rank correlation rs between predicted and implied volatilities
of the _ve test sets are reported in Table IV[ Correlations which are not signi_cantly di}erent
from 9 at the 4) level are in parentheses[ The best model "the highest correlation# for each test
set is in italic[ The volatility forecasts of all models are signi_cantly correlated with the implied
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Table IV[ A comparison of linear correlation "Pearson|s r# and rank correlation "Spearman|s rs# between
volatility implied by real!world option prices and volatility predicted by GARCH\ GARCH!t and
RMDN"1# models for the FTSE 099 test sets

GARCH GARCH!t RMDN"1#
Set r rs r rs r rs

0 9[129 9[292 9[131 9[204 9[207 9[264
1 9[083 9[101 9[127 9[185 9[195 9[156
2 9[512 9[467 9[516 9[470 "9[935# "9[995#
3 9[169 9[122 9[163 9[127 9[153 9[115
4 9[603 9[523 9[604 9[524 9[768 9[790

Correlations which are not signi_cant "at the 4) level#\ are in parentheses[ The best model "the highest correlation# is in
italic type[

volatility on all sets except for the RMDN"1# model on the third test set13[ As for the loss function\
it is found that the models with a leptokurtic conditional distribution produce the best results[ The
GARCH!t model and the RMDN"1# model achieve the highest linear and the highest rank cor!
relation on three and two sets\ respectively[ The highest correlations are obtained for the RMDN"1#
model on the most recent test set[ This means that a conditional distribution with fat tails is essential
for capturing and modelling those statistical dependencies in return series which lead to improved
volatility predictions if implied volatility is de_ned as the reference measure[

CONCLUSIONS

We have presented a neural network!based conditional density estimator which is semi!non!
parametric[ In terms of time series modelling\ our approach is more general than traditional
GARCH models of asset return series because the shape of the conditional density depends on
the actual information set and not only the variance of the conditional density[ Therefore\ the
concept of heteroscedasticity is extended to higher!order moments of the conditional distribution
such as skewness and kurtosis which may be time!dependent in our framework[

As with any newly proposed return series model\ the performance of the model should be
evaluated carefully[ First\ the performance should be measured out!of!sample so that the number
of model parameters plays no role when comparing models[ Furthermore\ it is dangerous to
evaluate the performance on a single data set or to rely on just one performance measure[ This
is particularly true if one is interested in volatility forecasting since volatility is not directly
observable[ We have tried to take into account all of these issues in our empirical analysis[ The
models are evaluated with respect to seven di}erent error measures on _ve disjoint sets out!of!
sample[ As a result\ the performance of each model is related to the particular data set and to
the error measure applied[ On average\ no model can be considered superior to any other model
in the sense that the di}erences in performance are statistically not signi_cant[ However\ the

13 This RMDN"1# model behaves similar to an integrated\ non!stationary model[ This behaviour may be obtained since
the parameters "weights# of an RMDN"1# model are not restricted during the estimation procedure in contrast to the
parameters of GARCH and GARCH!t models[ In fact\ the GARCH and GARCH!t models estimated on the third set
are nearly integrated[
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GARCH!t and the RMDN"1# models\ which are capable of modelling fat tails in the conditional
distribution\ show the best performance in most cases[

Our future research activities will concentrate on the full exploitation of the information
available from the whole conditional distribution of returns[ In particular\ it is planned to
implement trading strategies based on higher!order moment properties of the conditional dis!
tribution "see\ for example\ A(�t!Sahalia et al[\ 0887#[ Furthermore\ we will investigate the potential
bene_ts of using conditional distributions with fat tails for market risk management[
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